D.M.LL.PP. del 20/11/1987

Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento.

Art. 1.

Sono approvate le integrazioni e le rettifiche apportate alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento, di cui al decreto ministeriale 9.1.1987, predisposte dal Servizio tecnico centrale e già inserite nel testo unificato allegato al presente decreto.

Art. 2.

Le presenti norme sostituiscono quelle di cui al decreto 9.1.1987 ed entrano in vigore il 19 dicembre 1987, data già fissata con il decreto anzidetto.

UNITA' DI MISURA'

Il sistema di unità di misura adottato è il Sistema Internazionale di unità indica con la sigla SI di cui alle direttive del Consiglio delle Comunità europee n. 76/770/CEE del 27.7.1976.

Nelle presenti norme sono indicati anche, tra parentesi quadre, i corrispondenti valori nelle unità di misura del sistema tecnico.

Nella relazione tra i due sistemi

1 Kgf=9,8 I N (newton)

per le grandezze relative alle presenti norme il coefficiente 9,81 è stato arrotondato a 10 per ragioni di carattere pratico.

Titolo I NORME TECNICHE PER LA PROGETTAZIONE, ESECUZIONE E COLLAUDO DEGLI EDIFICI IN MURATURA

CAPITOLO 1 GENERALITA'

1.1. Oggetto ed ambito di applicazione.

Le presenti norme hanno lo scopo di fissare i criteri generali tecnico-costruttivi per la progettazione, lesecuzione ed il collaudo degli edifici a uno o più piani, in tutto o in parte a muratura portante, costituiti da un insieme di sistemi resistenti collegati tra di loro e le fondazioni e disposti in modo da resistere ad azioni verticali ed orizzontali.

Per altre tipologie edilizie, le presenti norme potranno assumersi quale utile riferimento metodologico.

Le murature considerate sono quelle costituite da elementi resistenti collegati fra di loro tramite malta.

Le presenti norme non sono applicabili agli edifici realizzati in muratura armata, ai quali si applica la procedura indicata nell'ultimo comma dell'art. 1 della legge n. 64 del 2.2.1974 e successive modificazioni.

Per gli edifici realizzati in zona sismica si applicheranno inoltre le prescrizioni di cui alla legge 2.2.1974, n. 64 e decreto ministeriale 24.1.1986 e successive modificazioni ed integrazioni.

Per quanto concerne le opere di fondazione vale quanto stabilito dal decreto ministeriale 21.1.1981 e successivi aggiornamenti.

1.2. Caratteristiche tipologiche e materiali.

1.2. 1 . Malte.

L'acqua per gli impasti deve essere limpida, priva di sostanze organiche o grassi, non deve essere aggressiva né contenere solfati o cloruri in percentuale dannosa.

La sabbia da impiegare per il confezionamento delle malte deve essere priva di sostanze organiche, terrose o argillose.

Le calci aeree, le pozzolane ed i leganti idraulici devono possedere le caratteristiche tecniche ed i requisiti previsti dalle vigenti norme (regii decreti 16.11.1939, n. 2231 e n. 2230; legge 26.5.1965, n. 595, decreto ministeriale 14.1.1966, decreto ministeriale 3.6.1968, decreto ministeriale 31.8.1972 e successive integrazioni o modificazioni).

L'impiego di malte premiscelate e premiscelate pronte per l'uso è consentito purché ogni fornitura sia accompagnata da una dichiarazione del fornitore attestante il gruppo della malta, il tipo e la quantità dei leganti e degli eventuali additivi. Ove il tipo di malta non rientri tra quelli appresso indicati il fornitore dovrà certificare con prove ufficiali anche le caratteristiche di resistenza della malta stessa.

Le modalità per la determinazione della resistenza a compressione delle malte sono riportate nel decreto ministeriale 3-6-1968 .

I tipi di malta e le loro classi sono definite in rapporto alla composizione in volume secondo la tabella sequente:

tabella

Classe	Tipo di malta	Composizione						
		Cemento	Calce area	Calce idraulica	Sabbia	Pozzolana		
M4	Idraulica			1	3			
M4	Pozzolanica		1			3		
M4	Bastarda	1		2	9			
МЗ	Bastarda	1		1	5			
M2	Cementizia	1		0,5	4			
M 1	Cementizia	1			3			

Alla malta cementizia si può aggiungere una piccola quantità di calce aerea con funzione plastificante.

Malte di diverse proporzioni nella composizione confezionate anche con additivi, preventivamente sperimentate, possono essere ritenute equivalenti a quelle indicate qualora la loro resistenza media a compressione risulti non inferiore ai valori seguenti:

- 12 N/mm² [120 Kgf/cm²] per l'equivalenza alla malta M1
- 8 N/mm² [80 Kgf/cm²] per l'equivalenza alla malta M2
- 5 N/mm² [50 Kgf/cm²] per l'equivalenza alla malta M3
- 2,5 N/mm² [25 Kgf/cm²] per l'equivalenza alla malta M4

1.2.2. Muratura costituita da elementi resistenti artificiali.

La muratura è costituita da elementi resistenti aventi generalmente forma parallelepipeda, posti in

opera in strati regolari di spessore costante e legati tra di loro tramite malta.

Gli elementi resistenti possono essere in:

laterizio normale;

laterizio alleggerito in pasta;

calcestruzzo normale;

calcestruzzo alleggerito.

Gli elementi resistenti artificiali possono essere dotati di fori in direzione normale al piano di posa (elementi a foratura verticale) oppure in direzione parallela (elementi a foratura orizzontale).

Elementi resistenti in laterizio

Si distinguono le seguenti categorie in base alla percentuale di foratura ~D ed all'area media della sezione normale di un foro f:

Elementi pieni $\phi \le 15\%$ f $\le 9 \text{ cm}^2$ Elementi semipieni $15\% \le \phi \le 45\%$ f $\le 12 \text{ cm}^2$ Elementi forati $45\% \le \phi \le 55\%$ f $\le 15 \text{ cm}^2$

La percentuale di foratura è espressa dalla formula seguente:

```
\phi = 100 \text{ F/A}
```

in cui: F = area complessiva dei fori passanti e profondi non passanti

A = area lorda della faccia delimitata dal suo perimetro

La distanza minima tra un foro ed il perimetro esterno non potrà essere inferiore a cm 1,0 al netto dell'eventuale rigatura, mentre la distanza fra due fori non potrà essere inferiore a cm 0,8 con una tolleranza del 10%.

Per elementi da paramento la distanza fra un foro ed il perimetro esterno deve essere di almeno cm 1,5, per elementi lisci, e di cm 1,3 per elementi rigati, al netto della rigatura.

I fori dovranno essere distribuiti pressoché uniformemente sulla faccia dell'elemento. Quando A sia maggiore di 300 cm², lelemento può essere dotato di un foro di presa di maggiori dimensioni fino ad un massimo di 35 cm², da computare nella percentuale complessiva della foratura, avente lo scopo di agevolare la presa manuale; per A maggiore di 580 cm², i fori di presa possono essere due con area di ogni foro non maggiore di 35 cm² e da computare nella percentuale complessiva della foratura.

Gli elementi possono avere incavi di limitata profondità destinati ad essere riempiti dal letto di malta.

Elementi resistenti in calcestruzzo

Si distinguono le seguenti categorie in base alla percentuale di foratura come sopra definite:

Elementi pieni $\phi \le 15\%$ Elementi semipieni 15% < $\phi \le 45\%$ Elementi forati 45% < $\phi \le 55\%$

La distanza minima tra un foro ed il perimetro esterno (al netto della eventuale rigatura) e tra due fori non potrà essere inferiore a 1,8 cm.

I fori dovranno essere distribuiti pressoché uniformemente sulla faccia del pezzo e l'area media della loro sezione normale non deve essere superiore a 0,10A. Quando A sia maggiore di 900 cm² lelemento può essere dotato di fori di maggiori dimensioni fino ad un massimo di 0,15A.

Gli elementi possono avere incavi di limitata profondità destinati ad essere riempiti dal letto di

malta.

Le caratteristiche di resistenza degli elementi resistenti artificiali in laterizio o calcestruzzo devono essere valutate secondo le indicazioni in allegato 1.

1.2.3. Muratura costituita da elementi resistenti naturali.

La muratura è costituita da elementi in pietra legati tra di loro tramite malta.

Le pietre, da ricavarsi in genere per abbattimento di rocce, devono essere non friabili o sfaldabili, e resistenti al gelo, nel caso di murature esposte direttamente agli agenti atmosferici.

Non devono contenere in misura sensibile sostanze solubili o residui organici.

Le pietre devono presentarsi monde di cappellaccio e di parti alterate o facilmente removibili; devono possedere sufficiente resistenza sia allo stato asciutto che bagnato, e buona adesività alle malte.

In particolare gli elementi devono possedere i requisiti minimi di resistenza determinabili secondo le modalità descritte nell'allegato 1.

L'impiego di elementi provenienti da murature esistenti è subordinato al soddisfacimento dei requisiti sopra elencati ed al ripristino della freschezza delle superfici a mezzo di pulitura e lavaggio delle superfici stesse.

Le murature formate da elementi resistenti naturali si distinguono nei seguenti tipi:

- 1) muratura di pietra non squadrata: composta con pietrame di cava grossolanamente lavorato, posto in opera in strati pressoché regolari;
- 2) muratura listata: costituita come le muratura in pietra non squadrata, ma intercalata da fasce di conglomerato semplice o armato oppure da ricorsi orizzontali costituiti da almeno due filari in laterizio pieno, posti ad interasse non superiori a m 1,6 ed estesi a tutta la lunghezza ed a tutto lo spessore del muro:
- 3) muratura di pietra squadrata: composta con pietre di geometria pressoché parallelepipeda poste in opera in strati regolari.

1.3. Concezione strutturale dell'edificio.

L'edificio a uno o più piani a muratura portante deve essere concepito come una struttura tridimensionale costituita da singoli sistemi resistenti collegati tra di loro e le fondazioni e disposti in modo da resistere alle azioni verticali ed orizzontali.

Detti sistemi sono:

- a) muri sollecitati prevalentemente da azioni verticali;
- b) muri sollecitati prevalentemente da azioni orizzontali;
- c) solai piani.

Ai fini di un adeguato comportamento statico dell'edificio, tutti i muri devono avere, per quanto possibile sia la funzione portante che di controventamento.

Occorre inoltre assicurare che i solai possano per resistenza e rigidezza assolvere il compito di ripartire le azioni orizzontali fra i muri di controventamento.

Le presenti norme forniscono i criteri per la verifica di sicurezza dei muri; per la verifica di sicurezza dei solai si rimanda alle vigenti norme tecniche emanate in base alla legge 5-11-1971, n. 1086.

Possono essere ammessi negli orizzontamenti elementi a volta a semplice o doppia curvatura, alle sequenti condizioni:

- --gli elementi siano contenuti all'interno dei riquadri della scatola muraria;
- -- sia assicurato in tale ambito l'assorbimento delle corrispondenti spinte orizzontali;
- -- sia comunque garantita la capacità globale dell'impalcato a ripartire le azioni orizzontali tra i muri di controventamento.

1.3. 1. Collegamenti

I tre sistemi di elementi piani sopraddetti devono essere opportunamente collegati fra loro.

Tutti i muri saranno collegati al livello dei solai mediante cordoli e, tra di loro, mediante ammorsamenti lungo le intersezioni verticali.

Inoltre essi saranno collegati da opportuni incatenamenti al livello dei solai. Nella direzione di tessitura dei solai la funzione di collegamento potrà essere espletata dai solai stessi purché adeguatamente ancorati alla muratura.

Il collegamento tra la fondazione e la struttura in elevazione sarà di norma realizzato mediante cordolo in c.a. disposto alla base di tutte le murature verticali resistenti, di spessore pari a quello della muratura di fondazione e di altezza non inferiore alla metà di detto spessore.

1.3.1.1. Cordoli.

In corrispondenza dei solai di piano e di copertura i cordoli si realizzeranno generalmente in cemento armato, di larghezza pari ad almeno 2/3 della muratura sottostante, e comunque non inferiore a 12 cm e di altezza almeno pari a quella del solaio e comunque non inferiore alla metà dello spessore del muro.

Per i primi tre orizzontamenti, a partire dall'alto, larmatura minima dei cordoli sarà di almeno 6 cm² con diametro non inferiore a mm 12.

In ogni piano sottostante gli ultimi tre, detta armatura minima sarà aumentata di cm² a piano.

La stessa armatura dovrà essere prevista nel cordolo di base interposto tra la fondazione e la struttura in elevazione.

In ogni caso, le predette armature non dovranno risultare inferiori allo 0,6% dell'area del cordolo.

Le staffe devono essere costituite da tondi di diametro non inferiore a 6 mm poste distanza non superiore a 30 cm.

Per edifici con più di 6 piani, entro e fuori terra, larmatura dei cordoli sarà costituita da tondi con diametro non inferiore a 14 mm e staffe con diametro non inferiore a 8 mm.

Negli incroci a L le barre dovranno ancorarsi nel cordolo ortogonale per almeno 40 diametri; lo squadro delle barre dovrà sempre abbracciare l'intero spessore del cordolo.

1.3.1.2. Incatenamenti orizzontali interni.

Gli incatenamenti orizzontali interni, aventi lo scopo di collegare i muri paralleli della scatola muraria ai livelli dei solai, devono essere realizzati per mezzo di armature metalliche.

Tali incatenamenti dovranno avere le estremità efficacemente ancorate ai cordoli.

Nella direzione di tessitura del solaio possono essere omessi gli incatenamenti quando il collegamento è assicurato dal solaio stesso.

In direzione ortogonale al senso di tessitura del solaio gli incatenamenti orizzontali saranno obbligatori per solai con luce superiore ai 4,5 m e saranno costituiti da armature con una sezione totale pari a 4 cm² per ogni campo di solaio.

1.4. Spessori minimi dei muri.

Lo spessore dei muri non può essere inferiore ai seguenti valori:

a) muratura in elementi resistenti artificiali pieni cm 12
b) muratura in elementi resistenti artificiali semipieni cm 20
c) muratura in elementi resistenti artificiali forati cm 25
d) muratura di pietra squadrata
e) muratura listata
f) muratura di pietra non squadratacm 50

Capitolo 2 MURATURE FORMATE DA ELEMENTI RESISTENTI ARTIFICIALI.

2. 1. Dimensionamento semplificato

Per edifici realizzati in muratura formata da elementi resistenti artificiali pieni o semipieni è possibile omettere le verifiche di sicurezza indicate al successivo punto 2.4. nel caso vengano rispettate le prescrizioni seguenti:

- a) ledificio sia costituito da non più di tre piani entro e fuori terra;
- b) la planimetria dell'edificio sia iscrivibile in un rettangolo con rapporti fra lato minore e lato maggiore non inferiore a 1/3;
- c) la snellezza della muratura, secondo la definizione del punto 2.2.1.3., non sia in nessun caso superiore a 12;
- d) larea della sezione di muratura resistente alle azioni orizzontali, espressa in percentuale rispetto alla superficie totale in pianta dell'edificio, sia non inferiore al 4% nelle due direzioni principali escluse le parti aggettanti; non sono da prendere in considerazione, ai fini della percentuale di muratura resistente, i muri di lunghezza L inferiore a 50 cm, misurata al netto delle aperture.

Deve inoltre risultare:

$$s = N/(0.65 A) \leq s_m$$

in cui:

N: carico verticale totale alla base del piano più basso dell'edificio;

A: area totale dei muri portanti allo stesso piano;

σm tensione base ammissibile della muratura, definita al punto 2.4.1.

2.2. Analisi strutturale.

L'analisi strutturale, in virtù delle caratteristiche descritte al punto 1.3, può essere condotta valutando separatamente le sollecitazioni derivanti dai carichi verticali e quelle derivanti dalle azioni orizzontali.

2.2.1. Muri soggetti a carichi verticali.

2.2.1.1. Schema statico.

Convenzionalmente le sollecitazioni sui muri e solai dovute ai carichi verticali, vengono valutate assimilando i muri a semplici appoggi per i solai; per tener conto dei momenti flettenti, dovuti ai carichi verticali, alle tolleranze di esecuzione ed al vento, i carichi agenti sui muri vengono considerati applicati con le eccentricità di cui al punto 2.2. 1 .2.

Qualora si intendano assumere schemi di calcolo più complessi, ad esempio a telaio, questi sono ammessi purché si tenga correttamente conto delle caratteristiche tecniche strutturali del nodo murosolaio e della parzializzazione delle sezioni.

2.2.1.2. Eccentricità dei carichi.

Le eccentricità di cui al paragrafo precedente vanno determinate convenzionalmente con i criteri che seguono:

a) eccentricità totale dei carichi verticali:

$$e_s = e_{s1} + e_{s2}$$

es1 dovuta alla eventuale posizione eccentrica del muro del piano superiore rispetto al piano medio del muro da verificare:

$$e_{s1} = \frac{N_1 d_1}{N_1 + \sum N_2}$$

es2 eccentricità delle reazioni di appoggio dei solai soprastanti la sezione di verifica:

$$e_{s2} = \frac{N_2 d_2}{N_1 + \sum N_2}$$

N1= carico trasmesso dal muro sovrastante supposto centrato rispetto al muro stesso;

N2 = reazione di appoggio dei solai sovrastanti il muro da verificare;

d1= eccentricità di N1 rispetto al piano medio del muro da verificare;

d2= eccentricità di N2 rispetto al piano medio del muro da verificare;

Tale eccentricità sono da considerarsi positive o negative a seconda che diano luogo a momenti con verso orario o antiorario.

b) eccentricità dovuta a tolleranze di esecuzione ea.

Considerate le tolleranze morfologiche e dimensionali connesse alle tecnologie di esecuzione degli edifici in muratura si prescrive di tener conto di una eccentricità ea, che deve essere assunta uguale a h/200 (h = altezza interna di piano espressa in cm);

c) eccentricità dovuta al vento ev considerato agente in direzione normale al piano della muratura. Tale eccentricità si valuta con la seguente formula:

$$e_v = M_v / N$$

dove Mv ed N sono, rispettivamente, il massimo momento flettente dovuto alla pressione (o depressione) del vento, e lo sforzo normale nella relativa sezione di verifica. Il muro è supposto incernierato al livello dei piani e, in mancanza di aperture, anche in corrispondenza dei muri trasversali se questi hanno interasse minore di 6 m.

Le eccentricità es, ea ed ev vanno convenzionalmente combinate tra di loro secondo le due seguenti espressioni:

$$e_1 = |e_s| + |e_a|$$
 $e_2 = \frac{e_1}{2} + |e_v|$

Il valore di e1 vale per la verifica dei muri nelle loro sezioni di estremità;

Il valore di e2 vale la verifica della sezione ove è massimo il valore di M.

I valori delle eccentricità così ricavate si utilizzano per la valutazione del coefficiente di riduzione della resistenza Φ (vedi punto 2.2.1.4.)

In ogni caso dovranno risultare,

$$e_1/t \le 0.33$$

 $e_2/t \le 0.33$

L'eccentricità di calcolo non può comunque essere assunta inferiore ad ea.

2.2.1.3. Snellezza di una muratura.

Si definisce snellezza convenzionale di una muratura, il rapporto h/t in cui:

ho lunghezza libera di inflessione del muro pari a p h;

t: spessore del muro.

Il valore di tale rapporto non deve risultare superiore a 20.

Sono indicati con:

- h: laltezza interna di piano;
- p: il fattore laterale di vincolo.

 $0.5 < h / a \le 1$

Il fattore p assume il valore 1 per il muro isolato, ed i valori indicati nella sottostante tabella quando il muro senza aperture (porte o finestre) è irrigidito con efficace vincolo da due muri trasversali di spessore non inferiore a 20 cm, posti ad interasse a.

tabella

3/2-h/a

Valori di p $h \, / \, a \leq 0, 5 \qquad \qquad 1$

h/a>1
$$\frac{1}{1+(h/a)}$$

Se il generico muro trasversale ha delle aperture (porte o finestre) si ritiene convenzionalmente che la sua funzione di irrigidimento possa essere espletata quando la stipite delle aperture disti dalla superficie del muro irrigidito almeno 1/5 dell'altezza del muro stesso; in caso contrario si assumerà p= 1.

2.2.1.4. Coefficiente di riduzione della resistenza del muro.

Il coefficiente Φ di riduzione della resistenza del muro dipende dalla snellezza, dalla eccentricità del carico verticale, dallo schema statico impiegato nel calcolo, e dagli effetti considerati del secondo ordine.

Tale coefficiente viene ricavato dalla tabella seguente in funzione della snellezza h0/t e del coefficiente di eccentricità m = 6 e/t, essendo t lo spessore del muro.

Valori del coefficiente Φ con L'ipotesi della articolazione (a cerniera)

Snellezza h0/t	Coefficiente di eccentricita' m=6 e/t							
	0	0,5	1,0	1,5	2,0			
0	1,00	0,74	0,59	0,44	0,33			
5	0,97	0,71	0,55	0,39	0,27			
10	0,86	0,61	0,45	0,27	0,15			

15	0,69	0,48	0,32	0,17	
20	0,53	0,36	0,23		

Per valori non contemplati in tabella è ammessa l'interpolazione lineare; in nessun caso sono ammesse estrapolazioni.

2.2.2. Muri soggetti a forze orizzontali.

La resistenza alle azioni orizzontali è ottenuta tramite il sistema formato dai solai e dalle pareti murarie, già definito al precedente punto 1.3.

La pressione del vento è trasmessa ai solai direttamente investiti.

I solai, sufficientemente rigidi e resistenti nel proprio piano, distribuiscono le azioni orizzontali tra le pareti murarie.

Le pareti murarie si comportano come sistemi piani formati da pannelli in muratura e da catene aderenti (cordoli).

Le azioni orizzontali si distribuiscono tra le pareti murarie in proporzione alla loro rigidezza ed alla loro distribuzione planimetrica.

Il calcolo delle rigidezze è effettuato convenzionalmente considerando la muratura resistente anche a trazione.

Nelle verifiche a pressoflessione non si può tener conto di tale resistenza.

2.3. Caratteristiche meccaniche della murutura.

Le due proprietà fondamentali in base alle quali si classifica una muratura sono la sua resistenza caratteristica a compressione fk e la sua resistenza caratteristica a taglio fvk.

2.3.1. Resistenza caratteristica a compressione.

La resistenza caratteristica a compressione fk di una muratura si determina per via sperimentale su campioni di muro secondo quanto indicato nell'allegato 2.

Per murature in elementi artificiali pieni e semipieni tale resistenza può anche essere valutata in funzione delle proprietà dei suoi componenti, nel caso in cui siano verificate le condizioni indicate al punto 2.3.1.1.

In ogni caso la resistenza caratteristica a compressione fk richiesta dal calcolo statico deve essere indicata nel progetto delle opere.

Per progetti nei quali la verifica di stabilità richieda un valore di fk maggiore o uguale a 8 N/mm² [80 Kgf/cm²] la direzione dei lavori procederà al controllo del valore di fk secondo le modalità descritte nell'allegato 2.

2.3.1.1. Determinazione della resistenza caratteristica a compressione in base alle caratteristiche dei componenti.

Per le murature formate da elementi artificiali pieni o semipieni il valore di fk può essere dedotto dalla resistenza a compressione degli elementi e dalla classe di appartenenza della malta tramite la tabella A.

Tabella A - Valore della fk per murature in elementi artificiali pieni e semipieni

Resistenza caratteristica	Tipo di malta

а	compression	e fbk dell'elemento	M	11	N	12	N	13	M	14
•	N/mm²	kgf/cm²	N/mm²	kgf/cm²	N/mm²	kgf/cm²	N/mm²	kgf/cm²	N/mm²	kgf/cm²
	2.0	20	1.2	12	1.2	12	1.2	12	1.2	12
	3.0	30	2.2	22	2.2	22	2.2	22	2.0	20
	5.0	50	3.5	35	3.4	34	3.3	33	3.0	30
	7.5	75	5.0	50	4.5	45	4. 1	41	3.5	35
	10.0	100	6.2	62	5.3	53	4.7	47	4.1	41
	15.0	150	8.2	82	6.7	67	6.0	60	5.1	51
	20.0	200	9.7	97	8.0	80	7.0	70	6.1	61
	30.0	300	12.0	120	10.0	100	8.6	86	7.2	72
	40.0	400	14.3	143	12.0	120	10.4	104		

La validità di tale tabella è limitata a quelle murature aventi giunti orizzontali e verticali riempiti di malta e di spessore compreso tra 5 a 15 mm.

Per valori non contemplati in tabella è ammessa l'interpolazione lineare; in nessun caso sono ammesse estrapolazioni.

Per le murature che non soddisfino alla precedente condizione la tabella seguente non è valida e si procederà alla determinazione sperimentale della fk secondo le modalità descritte nell'allegato 2.

2.3.2. Resistenza caratteristica a taglio.

La resistenza caratteristica a taglio della muratura in assenza di carichi verticali fvk0 si determina per via sperimentale su campioni di muro, secondo le modalità dell'allegato 2.

Per le murature formate da elementi resistenti artificiali pieni o semipieni tale resistenza può essere valutata per via indiretta in base alle caratteristiche dei componenti.

2.3.2.1. Determinazione della resistenza caratteristica a taglio in base alle caratteristiche dei componenti.

La resistenza caratteristica a taglio della muratura è definita come resistenza all'effetto combinato delle forze orizzontali e dei carichi verticali agenti nel piano del muro e può essere ricavata tramite la seguente relazione:

$$f_{vk} = f_{vk0} + 0.4 \, \mathbf{s}_{n}$$

ed inoltre per elementi resistenti artificiali semipieni o forati

$$f_{vk} \leq f_{vk} \lim$$

in cui

fvk0: resistenza caratteristica a taglio in assenza di carichi verticali;

on: tensione normale media dovuta ai carichi verticali agenti nella sezione di verifica;

fvk lim: valore massimo della resistenza caratteristica a taglio che può essere impiegata nel calcolo.

I valori di fvk0 possono essere dedotti dalla resistenza caratteristica a compressione fbk degli elementi resistenti tramite le tabelle B, C.

La validità di tali tabelle è limitata a quelle murature che soddisfano le condizioni già citate per la rabella A.

Per le murature che non soddisfino a tali condizioni si procederà alla determinazione sperimentale della fvko secondo le modalità descritte nell'allegato 2.

I valori di fvk lim saranno assunti pari a:

$$f_{vk} \lim = 1,4 \bar{f}_{bk}$$

essendo fbk il valore caratteristico della resistenza degli elementi in direzione orizzontale e nel piano del muro (valore da ricavare secondo le modalità descritte nell'allegato 1).

TABELLA B - Valore di fvko per murature in elementi artificiali in laterizio pieni o semipieni

a compressione fbk dell'elemento		Tipo di malta	fvko		
N/mm²	Kgf/cm²		N/mm²	Kgf/cm²	
fbk ≤ 15	fbk ≤ 150	M1 - M2 - M3 M4	0,20	2,0	
fbk > 15	fbk > 15	M1 - M2 - M3 M4	0,30	3,0	

TABELLA C - Valore di fvko per murature in elementi artificiali in calcestruzzo pieni e semipieni

a compressione fbk dell'elemento		Tipo di malta	fvko		
N/mm²	Kgf/cm²		N/mm²	Kgf/cm²	
fbk ≤ 3	fbk ≤ 30	M1 - M2 - M3	0,1	1	
		M4	0,1	1	
fbk > 3	fbk > 30	M1 - M2 - M3	0,2	2	
		M4	0,1	1	

2.4. Norme di calcolo

I metodi di verifica sono:

a) il metodo semplificato;

- b) il metodo delle tensioni ammissibili;
- c) il metodo semiprobabilistico agli stati limite. Per quanto non espressamente prescritto dalle presenti norme si fa riferimento ai criteri generali per la verifica di sicurezza delle costruzioni e norme tecniche per i carichi ed i sovraccarichi di cui al decreto ministeriale 12-2-1982 e successive integrazioni o modificazioni .

2.4.1. Verifiche di sicurezza con il metodo delle tensioni ammissibili.

Le componenti di sollecitazione dovute alle azioni permanenti e quelle provocate dalle azioni variabili devono valutarsi separatamente, per poi essere combinate in sede di verifica nel modo più sfavorevole.

2.4.1.1. Verifica dei muri soggetti ai carichi verticali.

Viene denominata tensione base ammissibile a compressione σm la tensione ammissibile in una muratura in assenza di fenomeni legati alla eccentricità di carico ed alla snellezza.

La tensione base ammissibile a compressione om nella muratura sarà dedotta dalla resistenza caratteristica della muratura a compressione fk applicando la formula seguente:

$$\overline{s}_{m} = f_{k}/5$$

La verifica di resistenza a compressione si effettuerà accertando che la tensione normale media nella sezione del muro rispetti la condizione seguente:

$$\mathbf{s} = N/(\Phi A) \leq \overline{\mathbf{s}}_{m}$$

dove

N: carico verticale totale calcolato alla base del muro;

A: area della sezione orizzontale del muro al netto delle aperture;

Φ coefficiente di riduzione della resistenza (p. 2.2.1.4.) valutato per l'eccentricità trasversale massima nella sezione da verificare:

σm tensione base ammissibile della muratura.

- 2.4.1.2. Verifica dei muri soggetti a forze orizzontali agenti nel piano del muro.
- 2.4.1.2.1. Verifica a pressoflessione.--L'azione flettente delle forze orizzontali determina sollecitazioni nei muri che si sommano a quelle indotte dai carichi verticali. L'eccentricità eb nel piano mediano del muro della risultante dei carichi verticali non deve superare il limite indicato dalla seguente espressione:

$$6 e_b / b \le 1,3$$

in cui eb: eccentricità longitudinale dovuta al momento indotto dalle forze orizzontali nella sezione di verifica;

b: lunghezza del muro.

La verifica di resistenza si effettuerà accertando che nella sezione del muro sia rispettata la condizione seguente:

$$\boldsymbol{s} = N/(\Phi_{t} \Phi_{b} A) \leq \overline{\boldsymbol{s}}_{m}$$

in cui

N: carico verticale calcolato alla base del muro;

A: area della sezione orizzontale del muro al netto delle aperture;

Φt . coefficiente di riduzione della resistenza valutato per l'eccentricità trasversale e2 (p. 2.2. 1.4.);

 Φ b : coefficiente di riduzione della resistenza valutato per l'eccentricità longitudinale eb; si ricava p. 2.2.1.4. tramite il coefficiente di eccentricità 6 eb/t e ponendo h0/t = 0.

2.4.1.2.2. Verifica a taglio.--Nelle sezioni orizzontali dei muri si verificherà che la tensione tangenziale, considerata uniformemente ripartita sulla sezione reagente, rispetti la seguente condizione:

$$t = v/(\boldsymbol{b} A) \le f_{vk}/5$$

in cui

V: forza di taglio totale agente nel piano del muro;

A: area della sezione orizzontale del muro al netto delle aperture;

fvk: resistenza caratteristica a taglio della muratura;

 β coefficiente di parzializzazione della sezione; tiene conto della eventuale zona di muro soggetta a trazione e assume i valori.

$$b = 1$$
 per $6e_b/b \le 1$
 $b = 3/2 - 3e_b/b$ per $1 < 6e_b/b \le 1,3$

2.4.2. Verifiche di sicurezza con il metodo semiprobalistico agli stati limite.

Le verifiche debbono essere condotte nei confronti degli stati limite ultimi; le verifiche agli stati limite di esercizio possono essere omesse in quanto la elevata rigidezza dellinsieme conduce a deformazioni molto piccole.

2.4.2.1. Combinazioni di carico.

Per la verifica agli stati limite ultimi, si impiegano le seguenti combinazioni di carico fondamentali, indicando con:

Gk: carichi permanenti

Qk: carichi variabili;

Wk: forza orizzontale dovuta al vento;

ψ: coefficiente di combinazione per i carichi variabili, assume i valori seguenti:

 ψ = 1 per le coperture ed i primi due solai più caricati;

 $\psi = 0.9$ 0.8 0.5 per i solai successivi.

--Combinazione A: azione base, carichi variabili

$$F_{d} = 1.5 G_{k} + 1.5 (y Q_{k} + 0.75 W_{k})$$

--Combinazione B: azione base, vento

$$F_d = 1.5 G_k + 1.5 (W_k + 0.60 Q_k)$$

--Combinazione C: azione base, vento, senza carichi variabili

$$F_d = G_k + 1.5 W_k$$

Le verifiche ai carichi verticali saranno condotte impiegando la più sfavorevole tra le combinazioni A e B; le verifiche alle forze orizzontali verranno condotte impiegando anche la combinazione C.

2.4.2.2. Verifica dei muri soggetti ai carichi verticali.

La resistenza di calcolo fd si valuta mediante l'espressione:

$$f_d = f_k / g_m$$

in cui fk è la resistenza caratteristica della muratura e γm è pari a 3.

Affinché la sezione del muro risulti verificata occorre che il carico verticale agente di calcolo Nd, rispetti la seguente condizione:

$$N_d \leq \Phi f_d A$$

Nd: carico verticale agente di calcolo alla base del muro;

A: area della sezione orizzontale del muro, al netto delle aperture;

fd: resistenza di calcolo della muratura;

Φ: coefficiente di riduzione della resistenza del muro.

2.4.2.3. Verifica dei muri soggetti alle forze orizzontali agenti nel piano del muro.

2.4.2.3.1. Verifica a pressoflessione.--Il momento flettente dovuto all'azione orizzontale di calcolo si combina con il carico verticale agente di calcolo Nd; la risultante è una forza Nd con eccentricità longitudinale eb riferita al baricentro dell'area della sezione del muro. Tale eccentricità eb non deve superare il limite indicato dalla seguente espressione:

$$6 e_{b} / b \le 2$$

in cui

eb: eccentricità longitudinale del carico Nd;

b: lunghezza del muro.

Affinché la sezione del muro risulti verificata occorre che il carico verticale agente di calcolo Nd sia inferiore al carico di rottura del muro in applicazione della seguente espressione:

$$N_d \leq \Phi_t \Phi_b f_d A$$

in cui

Nd: carico verticale agente di calcolo alla base del muro;

A: area della sezione orizzontale del muro, al netto delle aperture;

fd: resistenza a compressione di calcolo del muro;

Φt: coefficiente di riduzione della resistenza in funzione delle eccentricità trasversali (p. 2.2.1.4.);

Φb :coefficiente di riduzione della resistenza (p. 2.4.1.2.1.);

2.4.2.3.2. Verifica a taglio.

- La resistenza a taglio di calcolo fvd si valuta mediante la seguente espressione:

$$f_{vd} = f_{vk} / 3$$

in cui fvk è la resistenza caratteristica a taglio.

Affinché la sezione del muro risulti verificata occorre che l'azione orizzontale di calcolo Vd sia inferiore alla resistenza a taglio di calcolo fvd secondo la seguente espressione:

$$V_d \leq \boldsymbol{b} f_{vd} A$$

in cui Vd: azione orizzontale di calcolo agente nel piano del muro;

A: area della sezione orizzontale del muro al netto delle aperture;

fvd: resistenza a taglio di calcolo della muratura;

β: coefficiente di parzializzazione della sezione (p.2.4.1.2.2.).

CAPITOLO 3 MURATURE FORMATE DA ELEMENTI RESISTENTI NATURALI

3. 1. Dimensionamento semplificato.

Per edifici realizzati in muratura formata da elementi resistenti è possibile omettere le verifiche di sicurezza indicate al precedente punto 2.4. nel caso vengano rispettate le prescrizioni seguenti:

- a) ledificio sia costituito da non più di tre piani entro e fuori terra;
- b) la planimetria dell'edificio sia iscrivibile in un rettangolo con rapporti fra lato minore e lato

maggiore non inferiore a 1/3;

c) la snellezza della muratura, secondo la definizione del punto 2.2.1.3., non sia in nessun caso superiore a 12;

d) larea della sezione di muratura resistente alle azioni orizzontali, espressa in percentuale rispetto alla superficie totale in pianta dell'edificio, sia non inferiore al 4% nelle due direzioni principali escluse le parti aggettanti; non sono da prendere in considerazione, ai fini della percentuale di muratura resistente, i muri di lunghezza L inferiore a 50 cm, misurata al netto delle aperture.

Deve inoltre risultare:

$$\mathbf{s} = N/(0.65 A) \leq \overline{\mathbf{s}}_{m}$$

in cui

N: carico verticale totale alla base del piano più basso dell'edificio;

A: area totale dei muri portanti allo stesso piano;

σm: tensione base ammissibile della muratura, definita al punto 2.4.1.

3.2. Norme di calcolo per edifici in muratura di pietra squadrata.

Per gli edifici in muratura di pietra squadrata è possibile effettuare l'analisi strutturale e le verifiche di sicurezza, secondo quanto indicato ai precedenti punti 2.2. e 2.4., allorché siano determinate le caratteristiche meccaniche della muratura come prescritto nellallegato 1.

3.3. Caratteristiche meccaniche della muratura di pietra squadrata.

Le proprietà fondamentali della muratura sono la resistenza caratteristica a compressione fk e la resistenza caratteristica a taglio fvk

3.3.1. Resistenza caratteristica a compressione della muratura.

La resistenza caratteristica a compressione della muratura si determina per via sperimentale su campioni di muro secondo quanto indicato nell'allegato 2, oppure può essere valutata in funzione delle proprietà dei suoi componenti tramite la tabella D del successivo punto 3.3.1.1.

La validità di tale tabella è limitata a quelle murature aventi giunti orizzontali e verticali riempiti con malta avente le caratteristiche descritte al punto 1.2.1. e di spessore compreso tra 5 e 15 mm.

In ogni caso la resistenza caratteristica a compressione fk della muratura richiesta dal calcolo statico deve essere indicata nel progetto delle opere.

Per progetti nei quali la verifica di stabilità richiede un valore di fk maggiore o eguale a 8 N/mm² [80 Kgf/cm²] la direzione dei lavori procederà al controllo del valore di fk, secondo le modalità descritte nell'allegato 2.

3.3.1.1. Determinazione della resistenza caratteristica a compressione della muratura in base alle caratteristiche dei componenti.

Ai fini della determinazione della resistenza caratteristica a compressione della muratura in funzione delle proprietà dei suoi componenti si assume convenzionalmente la resistenza caratteristica a compressione dell'elemento fbk pari a:

$$f_{bk} = 0.75 f_{bm}$$

dove fbm rappresenta la resistenza media a compressione degli elementi in pietra squadrata valutata secondo le indicazioni dell'allegato 1.

Il valore della resistenza caratteristica a compressione della muratura fk può essere dedotto dalla resistenza caratteristica a compressione degli elementi fbk e dalla classe di appartenenza della malta tramite la seguente tabella D.

Per valori non contemplati in tabella è ammessa l'interpolazione lineare; in nessun caso sono ammesse estrapolazioni.

Tabella D - Valore della fk per murature in elementi naturali di pietra squadrata

Resistenza caratteristica compressione fbk dell'elemento		Tipo di malta							
		M1		M2		M3		M4	
N/mm²	kgf/cm²	N/mm²	kgf/cm²	N/mm²	kgf/cm²	N/mm²	kgf/cm²	N/mm²	kgf/cm²
1.5	15	1.0	10	1.0	10	1.0	10	1.0	10
3.0	30	2.2	22	2.2	22	2.2	22	2.0	20
5.0	50	3.5	35	3.4	34	3.3	33	3.0	30
7.5	75	5.0	50	4.5	45	4. 1	41	3.5	35
10.0	100	6.2	62	5.3	53	4.7	47	4.1	41
15.0	150	8.2	82	6.7	67	6.0	60	5.1	51
20.0	200	9.7	97	8.0	80	7.0	70	6.1	61
30.0	300	12.0	120	10.0	100	8.6	86	7.2	72
≥ 40.0	≥ 400	14.3	143	12.0	120	10.4	104		

3.3.2. Resistenza caratteristica a taglio della muratura.

La resistenza caratteristica a taglio della muratura in assenza di carichi verticali fvk0 si determina per via sperimentale su campioni di muro, secondo le modalità dell'allegato 2.

Tale resistenza può essere valutata anche in funzione delle proprietà dei suoi componenti nel caso in cui siano verificate le condizioni di cui al primo comma del punto 3.3.1.

3.3.2.1. Determinazione della resistenza caratteristica a taglio della muratura in base alle caratteristiche dei componenti.

La resistenza caratteristica a taglio della muratura è definita come resistenza all'effetto combinato delle forze orizzontali e dei carichi verticali agenti nel piano del muro e può essere ricavata tramite la seguente relazione:

$$f_{vk} = f_{vk0} + 0.4 \, \overline{s}_{n}$$

in cui

fvk0 : resistenza caratteristica a taglio in assenza di carichi verticali;

σn: tensione normale media dovuta ai carichi verticali agenti nella sezione di verifica;

I valori di fvk0 possono essere dedotti dalla resistenza caratteristica a compressione fbk degli elementi resistenti tramite la tabella E.

TABELLA E - Valore di fvko per murature in pietra naturale squadrata

Resistenza	caratteristica			
a compressione fbk dell'elemento		Tipo di malta	fvkc)
N/mm²	Kgf/cm ²		N/mm²	Kgf/cm ²

fbk ≤ 3	fbk ≤ 30	M1 - M2 - M3	0,1	1
		M4	0,1	1
fbk > 3	fbk > 30	M1 - M2 - M3	0,2	2
		M4	0,1	1

CAPITOLO 4 COLLAUDO STATICO DEGLI EDIFICI IN MURATURA

4.0

Il collaudo statico degli edifici in muratura dovrà comprendere i seguenti accertamenti:

- a) ispezione generale dell'opera nel suo complesso con particolare riguardo a quelle parti di strutture più significative da confrontare con i disegni esecutivi progettuali;
 - b) esame dei certificati di prove sui materiali, quando prescritte;
 - c) esame delle risultanze delle eventuali prove di carico fatte eseguire dal direttore dei lavori;
- d) controllo che l'impostazione generale della progettazione strutturale sia coerente con le presenti norme.

Inoltre, potranno discrezionalmente essere richiesti i seguenti ulteriori controlli:

- --prove di carico, eventualmente integrative di quelle già effettuate a cura del direttore dei lavori;
- -- saggi diretti sulle murature o sui singoli elementi resistenti
- -- controlli non distruttivi sulla struttura.

Potranno altresì essere richieste documentazioni integrative di progetto atte a definire compiutamente lo schema strutturale assunto o a meglio specificare dati incerti o non quantificati assunti a base della progettazione dell'edificio.

Titolo II NORME TECNICHE PER IL CONSOLIDAMENTO DEGLI EDIFICI IN MURATURA

CAPITOLO 1 GENERALITA'

1.0

Valgono, in quanto applicabili, anche ai fini del collaudo statico, le disposizioni di carattere generale indicate nel titolo I della presente normativa.

1.1 Oggetto e ambito di applicazione.

Si definisce intervento di consolidamento l'esecuzione di un complesso di opere che risultino necessarie per rendere l'edificio atto a resistere alle azioni verticali ed orizzontali previste in progetto.

E' fatto obbligo di procedere al consolidamento a chiunque intenda:

- a) sopraelevare o ampliare l'edificio;
- b) apportare variazioni di destinazione che comportino incrementi dei carichi originari superiori al 20%
- c) effettuare interventi strutturali rivolti a trasformare l'edificio in un organismo edilizio diverso dal precedente:
 - d) effettuare interventi strutturali rivolti ad eseguire opere e modifiche per rinnovare e sostituire

parti strutturali dell'edificio, allorché detti interventi implichino sostanziali alterazioni del comportamento globale dell'edificio stesso;

e) effettuare interventi strutturali rivolti a reintegrare l'organismo edilizio esistente nella sua funzionalità strutturale mediante un insieme sistematico di opere.

Nel caso in cui, in relazione allo stato di fatto dell'edificio e sulla base degli accertamenti e delle verifiche eseguite, risulti che non occorrono provvedimenti di consolidamento, deve essere ugualmente presentata la documentazione tecnica di cui al punto 1.3. riferita al fabbricato esistente.

1.2. Criteri di scelta progettuale

I criteri adottati nella scelta del tipo di intervento devono scaturire, di norma, da uno studio preliminare dell'organismo edilizio riguardante in particolare:

- a) le caratteristiche sotto il profilo architettonico, strutturale e della destinazione d'uso nella situazione esistente:
- b) levoluzione delle predette caratteristiche con particolare riferimento all'impianto edilizio originario ed alle principali modificazioni intervenute nel tempo;
- c) l'analisi globale del comportamento strutturale al fine di accertare le cause ed il meccanismo di eventuali dissesti in atto con particolare riguardo al sottosuolo interessato.

1.3 Operazioni progettuali

Il progetto di un intervento su di un edificio sarà basato sulle seguenti operazioni:

- a) rilievo atto all'individuazione dello schema strutturale nella situazione esistente;
- b) valutazione delle condizioni di sicurezza attuale dell'edificio e delle caratteristiche di resistenza degli elementi strutturali interessati dagli interventi, avuto riguardo alla eventuale degradazione dei materiali e ad eventuali dissesti in atto;
- c) scelta progettuale dei provvedimenti di intervento operata sulla base degli elementi determinati come sopra;
 - d) verifica di sicurezza del nuovo organismo strutturale.

Il progetto deve essere completo ed esauriente per planimetria, piante, sezioni, particolari esecutivi, relazione tecnica, relazione sulle fondazioni e fascicolo dei calcoli per le verifiche di sicurezza. In particolare la relazione tecnica deve riferirsi anche a quanto indicato nei successivi punti.

In ogni caso i disegni di progetto devono contenere le necessarie informazioni atte a definire le modalità di realizzazione degli interventi nonché, ogni qualvolta occorra, la descrizione e la rappresentazione grafica delle fasi di esecuzione con le relative prescrizioni specifiche.

CAPITOLO 2 CRITERI GENERALI DI CALCOLO

2.1. Analisi dei materiali.

La resistenza della muratura sarà calcolata in relazione al tipo, alla qualità, ed allo stato di conservazione del sistema murario.

2.2. Schema strutturale.

Il progetto degli interventi di consolidamento deve basarsi su uno schema strutturale che deve rispecchiare il comportamento dell'edificio nelle condizioni di futuro esercizio.

Per ciascuna parete si considereranno in genere separatamente le azioni ad essa complanari e quelle normali.

Le azioni complanari alle pareti saranno valutate tenendo conto nella ridistribuzione oprata dai solai solo se questi presentano adeguata rigidezza nel loro piano e buon collegamento con i muri.

Nei confronti delle azioni ortogonali alle pareti queste si considereranno vincolate ai solai ed alle pareti trasversali solo se è accertata l'efficacia dei collegamenti.

2.3. Provvedimenti tecnici.

I provvedimenti tecnici intesi ad aumentare la resistenza delle strutture consistono sia nell'aumentare la resistenza di alcuni o di tutti gli elementi costituenti il sistema strutturale esistente, sia nell'inserimento di nuovi elementi o sistemi strutturali collaboranti con quelli esistenti.

2.3.1. Provvedimenti tecnici in fondazione.

Gli interventi di consolidamento riguardanti le strutture di fondazione hanno lo scopo di renderle conformi con le prescrizioni di cui alle vigenti norme.

Le verifiche dovranno essere eseguite secondo i criteri stabiliti nel decreto ministeriale 21.1.1981 e successivi aggiornamenti.

Negli interventi di consolidamento i provvedimenti sulle strutture di fondazione e le relative verifiche potranno essere omessi, qualora su responsabile o motivato giudizio del progettista ed in relazione alle caratteristiche dei terreni, siano contemporaneamente verificate le seguenti circostanze:

- a) nella costruzione non sono presenti dissesti di qualsiasi natura attribuibili a cedimenti delle fondazioni;
- b) gli interventi di consolidamento non comportano alterazioni dello schema strutturale del fabbricato sostanziali per la trasmissione delle sollecitazioni al terreno;
- c) gli stessi interventi non comportano rilevanti modificazioni dei pesi e dei sovraccarichi dell'edificio;
- d) non sono in atto modificazioni sensibili dell'assetto idrogeologico della zona che possano influenzare la stabilità delle fondazioni.

ALLEGATI

Determinazione sperimentale della resistenza dei materiali

Le prove sui materiali prescritte dalla presente normativa devono essere eseguite presso i laboratori di cui all'art. 20 della legge 5-11-1971, n. 1086.

ALLEGATO I

1.1 Determinazione sperimentale della resistenza a compressione degli elementi resistenti artificiali e naturali.

1.1.1. Determinazione sperimentale della resistenza a compressione degli elementi resistenti artificiali.

La produzione degli elementi resistenti artificiali deve essere controllata per ogni stabilimento di produzione mediante prove ufficiali con periodicità almeno annuale.

Il controllo di accettazione in cantiere eventualmente richiesto dal direttore dei lavori ha lo scopo di accertare se gli elementi da mettere in opera abbiano le caratteristiche dichiarate dal produttore.

Tale controllo sarà effettuato su uno o più campioni costituiti ognuno da tre elementi da sottoporre a prova di compressione. Per ogni campione siano f1, f2, f3 la resistenza a compressione dei tre elementi con

$$f_1 < f_2 < f_3$$

il controllo si considera positivo se risultano verificate entrambe le diseguaglianze:

$$(f_1 + f_2 + f_3)/3 \ge 1,20 f_{bk}$$

 $f_1 \ge 0,90 f_{bk}$

Al direttore dei lavori spetta comunque l'obbligo di curare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove ai laboratori siano effettivamente quelli prelevati in cantiere con indicazioni precise sulla fornitura e sulla posizione che nella muratura occupa la fornitura medesima.

1.1.2. Determinazione sperimentale della resistenza a compressione degli elementi resistenti naturali.

La produzione degli elementi resistenti naturali deve essere controllata per ogni cava mediante prove ufficiali con periodicità almeno annuale e comunque ogni qual volta che cambino sostanzialmente la natura e le caratteristiche meccaniche del materiale.

Il controllo di accettazione in cantiere eventualmente richiesto dal direttore dei lavori ha lo scopo di accertare che gli elementi da mettere in opera abbiano le caratteristiche dichiarate dal produttore.

Tale controllo sarà effettuato su uno o più campioni costituiti ognuno da tre elementi da sottoporre a prova di compressione. Per ogni campione, indicate con f1, f2, f3, le resistenze a compressione dei tre elementi con

$$f_1 < f_2 < f_3$$

il controllo si considera positivo se risultano verificate entrambe le diseguaglianze:

$$(f_1 + f_2 + f_3)/3 \ge 1,20 f_{bk}$$

 $f_1 \ge 0,90 f_{bk}$

Al direttore dei lavori spetta comunque l'obbligo di curare, mediante sigle, etichettature indelebili, etc., che i campioni inviati per le prove ai laboratori siano effettivamente quelli prelevati in cantiere con indicazioni precise sulla fornitura e sulla posizione che nella muratura occupa la fornitura medesima.

1.2. Modalità per la determinazione della resistenza a compressione degli elementi resistenti artificiali.

1.2.1. Resistenza a compressione nella direzione dei carichi verticali.

Si definisce resistenza caratteristica quella resistenza al di sotto della quale ci si può attendere di trovare il 5% della popolazione di tutte le misure di resistenza.

La resistenza di rottura a compressione di un singolo elemento è data dalla seguente espressione:

$$f_{bi} = N/A$$

in cui:

N = carico di rottura applicato in direzione ortogonale al piano di posa;

A = area lorda della sezione normale alla direzione di carico, come definita al punto 1.2.2.

Il valore della resistenza caratteristica fbk si ricava dalla formula seguente, applicata ad un numero minimo di 30 elementi:

$$f_{bk} = f_{bm} (1-1,64 \, d)$$

in cui: fbm = media aritmetica della resistenza dei singoli elementi fbi

 $\delta = s/fbm$ coefficiente di variazione:

s = stima dello scarto quadratico medio

$$s = \sqrt{\frac{\sum_{n} (f_{bm} - f_{bi})^{2}}{n - 1}}$$

(n. = numero degli elementi provati)

Qualora, per ragioni dimensionali (dimensione blocco ≥ 40 cm) si operi su semiblocchi, il valore di fbi è dato dalla media di resistenza dei due semiblocchi

Il valore della fbk non è accettabile per

1.2.2. Resistenza a compressione nella direzione ortogonale a quella dei carichi verticali e nel piano della muratura.

La resistenza caratteristica a compressione in direzione ortogonale ai carichi verticali e nel piano della muratura sarà dedotta da quella media fbm mediante la relazione:

$$\overline{f}_{bk} = 0.7 \overline{f}_{bm}$$

La resistenza media fbm sarà ricavata da prove su almeno sei campioni.

1.3. Resistenza a compressione degli elementi resistenti naturali.

La resistenza media a compressione fbm degli elementi in pietra, con esclusione dei tufi, deve essere determinata secondo le modalità descritte nel regio decreto 16-11-1939 n. 2232, recante le norme per l'accettazione delle pietre naturali da costruzione.

Per i tufi, le prove di cui al punto 1.1.2., in base alle quali le singole cave determineranno la resistenza media a compressione fbm, devono essere eseguite su trenta elementi da provare nella direzione di lavoro. Non sono ammessi tufi la cui resistenza media a compressione fbm sia inferiore a 20 kg/cmq e per i quali il singolo campione abbia resistenza a compressione inferiore a 15 Kg/cmq.

Per tutti gli elementi resistenti naturali si considera convenzionalmente

$$f_{bk} = 0.75 f_{bm}$$

ALLEGATO 2

2.1. Determinazione sperimentale della resistenza a compressione e della resistenza a taglio della muratura.

Tramite le prove descritte nel presente allegato può essere determinato il modulo di elasticità normale secante della muratura facendo riferimento all'intervallo

$$0.1 f_{\nu} \div 0.4 f_{\nu}$$

In mancanza di determinazione sperimentale, potranno assumersi nei calcoli i seguenti valori dei moduli di elasticità:

modulo di elasticità normale secante E:

$$E = 1000 f_{\nu}$$

modulo di elasticità tangenziale secante G:

$$G = 0.4E$$

2.1.1. Resistenza a compressione della muratura

La resistenza caratteristica a compressione si determina su n muretti ($n \ge 6$), seguendo sia per la confezione che per la prova le modalità indicate nel seguente paragrafo.

La resistenza caratteristica è data dalla relazione:

$$f_k = f_m - ks$$

dove:

fm resistenza media;

s = stima dello scarto;

k = coefficiente dato dalla tabella seguente:

tabella

n 	6	8	10	12	20
k	2,33	2,19	2,10	2,05	1,93

La determinazione della resistenza caratteristica deve essere completata con la verifica dei materiali, da condursi come segue:

- -- malta: n. 3 provini prismatici 40x40x 160 mm da sottoporre a flessione, e quindi a compressione sulle 6 metà risultanti, secondo il decreto ministeriale 3-6-1968
- -- elementi resistenti: n. 10 elementi da sottoporre a compressione con direzione del carico normale al letto di posa.

2.1.1.1. Caratteristiche dei provini.

I provini (muretti) devono avere le stesse caratteristiche della muratura in esame e ognuno di essi deve essere costituito almeno da tre corsi di elementi resistenti e deve rispettare le seguenti limitazioni:

- -- lunghezza (b) pari ad almeno due lunghezze di blocco;
- -- rapporto altezza/spessore (I/t) variabile tra 2,4 e 5

La confezione avverrà su di un letto di malta alla base e la faccia superiore sarà finita con uno strato di malta

Dopo una stagionatura di 28 giorni a 20°C, 70% di umidità relativa, prima di effettuare la prova la faccia superiore di ogni provino viene eventualmente livellata con gesso; il muretto può anche essere contenuto fra due piastre metalliche rettificate, utili per gli spostamenti ed il suo posizionamento nella pressa

Il provino viene posto fra i piatti della macchina di prova (uno dei quali articolato) e si effettua quindi la centratura del carico. In proposito è consigliabile procedere anche ad un controllo estensimetrico.

Il carico deve essere applicato con una velocità di circa 0,5 MPa ogni 20 secondi.

2.1.2. Resistenza a taglio della muratura in assenza di carichi verticali.

La determinazione della resistenza al taglio fvk0 della muratura deve essere effettuata mediante prove di compressione diagonale su muretti.

Le prove saranno effettuate su almeno 6 provini.

La resistenza caratteristica fvk0 sarà dedotta dalla resistenza media ottenuta fvm, mediante la:

$$f_{vk0} = 0.7 f_{vm}$$